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Abstract 
 

The cluster-based web server is cost-effective to 
be used in a popular web site. To balance the load of 
servers in a cluster and get better performance, many 
researches focus on the content-aware request 
distribution policies that take into account the content 
of requests in distributing requests from clients to 
servers. 

In this paper, we have proposed a content-aware 
request distribution policy called Hybrid 
Locality-Aware Request Distribution policy 
(HyLARD). This policy mainly combines the 
advantages of the well-known locality-aware request 
distribution (LARD) policy and LARD with 
replication (LARD/R) policy, to improve the cache hit 
rates in servers’ RAM while maximizing the 
utilization of servers’ RAM. Besides, it also reduces 
the excessive multiple handoffs on persistent 
connections and improves load balancing on the 
server cluster. We have implemented it in the Linux 
Virtual Server with content-aware dispatching 
(LVS-CAD) Platform. 
Keywords: web clusters, cluster-based systems, 
content-aware request distribution. 
 
1. INTRODUCTION 
 

Popular web sites often face the challenge to deal 
with huge amount of http requests at short time. A 
single server usually can’t deal with such huge 
requests. Therefore, a cluster-based web server that 
can provide high scalability and high availability is 
often been used. Among the cluster-based servers, 
Linux Virtual Server (LVS) [6] which consists of 
several request-handling back-end servers and one 
request-dispatching front-end server is popularly used. 

To get better performance, many content-aware 
platforms [2, 7, 10] have been developed to enable 
front-end server to apply sophisticated dispatching 
policies. The front-end server of a content-aware web 
cluster is also known as the layer-7 web switch in the 
OSI architecture. Many content-aware request 
distribution policies [3, 4, 5, 8] have been proposed to 
increase the throughput of the whole server cluster and 
balance the loads among the back-end servers, such as 
LARD [9], WARD [4], CWARD [5] and CAP [3] 

policies. 
Locality-aware request distribution (LARD) 

policy is one of well-known content-aware request 
distribution policies. In LARD policy, front-end server 
dispatches the request of the same web object to the 
same back-end server. However, LARD may lead to 
load unbalancing due to the different popularity of 
web pages. Therefore, LARD/R policy was proposed 
to solve this problem by using server sets consisting of 
several back-end servers that may be selected to serve 
one specific request to prevent load unbalancing. 

In this research, we  propose the hybrid 
locality-aware request distribution policy (HyLARD) 
to enhance the LARD/R policy and implement it in 
the Linux Virtual Server with content-aware 
dispatching (LVS-CAD) Platform [7] which is based 
on TCP Rebuilding mechanism [7]. The LVS-CAD 
also supports multiple TCP Rebuilding like multiple 
handoff [7] which enables content-aware request 
distribution  under persistent connections. 

The rest of this paper is organized as follows. 
Section 2 introduces the background and related 
works. The design and implementation of our 
proposed Hybrid LARD (HyLARD) is presented in 
Section 3. Section 4 presents the experimental results. 
Finally, we conclude in Section 5. 
 
2. BACKGROUND and RELATED 

WORKS 
 

This section describes related content-aware 
request distribution policies. Section 2.1 briefly 
describes Linux Virtual Server. TCP rebuilding 
mechanism is introduced in Section 2.2. Section 2.3 
presents the locality-aware requests distribution 
(LARD) policy and LARD/R policy. Workload-aware 
request distribution (WARD) is described in Section 
2.4. Then, content-based workload-aware request 
distribution (CWARD) and content-aware dispatching 
policy (CAP) are described in Section 2.5 and Section 
2.6 respectively.  
 
2.1. Linux Virtual Server 
 

Linux virtual server (LVS) developed by 
Wensong Zhang is a highly scalable and highly 
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available cluster-based server based on Linux. LVS 
consists of one front-end server and several back-end 
servers. There are three kinds of routing mechanisms 
on LVS: NAT (network address translation), IP 
tunneling and direct routing. Direct routing is the most 
efficient mechanism. The front-end server in LVS is 
also called layer-4 web switch according to the OSI 
layer. The layer-4 web switch dispatches requests 
according to the IP address and TCP port number in a 
packet.  
 
2.2. TCP Rebuilding Mechanism  
 

TCP rebuilding mechanism is used to enable the 
content-aware request distribution on LVS-CAD 
platform. In this platform, front-end server must 
perform three-way handshaking with clients to get the 
following requests containing HTTP content. Then, 
the front-end server can schedule the request to one of 
back-end servers according to the content of request. 
Therefore, TCP state must be migrated to the selected 
back-end server so that the selected back-end server 
can respond directly to the client.  

TCP rebuilding is a light-weight TCP connection 
transfer mechanism which makes front-end server to 
transfer the established connection with client to a 
back-end server by using only the request packet.  
 
2.3. Locality-Aware Request Distribution 
 

The locality-aware request distribution (LARD) 
policy is a content-based request distribution policy 
which aims at achieving load balancing and high 
cache hit rates. 

In LARD, when a request arrives, front-end 
server will choose the least loaded back-end server to 
serve the request and keep the mapping information of 
this request to the chosen back-end server. Then, the 
subsequently identical request will be served by the 
same back-end server to achieve high cache hit rates 
for reducing the disk I/O operations.  

In LARD/R, when a request arrives, front-end 
will select one back-end server in the same manner as 
LARD does. Once the selected back-end server is 
overload, front-end will select another least loaded 
back-end server to serve this request. Thus, there are 
two or more back-end servers to serve this request and 
cache the document in RAM. These back-end servers 
form a server set of this request. 
 
2.4. Workload-Aware Request Distribution 
 

Workload-aware request distribution (WARD) is 
also a content-based request distribution policy which 
identifies a small set of most frequently accessed files 
called core to be served by all servers in the cluster. 
The rest of files called part are partitioned to be served 
by different back-end servers. WARD uses the 
ward-analysis algorithm to determine the file size of 

core files. Another idea in this policy is to make each 
back-end server could forward requests to other 
servers.  
 
2.5. Content-Based Workload-Aware Request 

Distribution 
 

Content-based workload-aware request 
distribution with core replication (CWARD/CR) aims 
to achieve high cache hit rates and reduce the data 
transferring between RAM and disks. It’s similar to 
WARD policy which partitions web files into core and 
part.  However, CWARD/CR allocates a small 
amount of RAM to pre-fetch core files into server 
RAMs that could effectively avoid core files to be 
replaced into disks due to cache replacement. 
 
2.6. Content-Aware Dispatching Policy 
 

The main goal of content-aware dispatching 
policy (CAP) is to improve load sharing in web cluster 
by classifying services. CAP classifies requests into 
four classes, namely normal (N), CPU bound (CB), 
disk bound (DB), and disk and CPU bound (DCB) 
services. Then, round-robin is used in each class to 
balance the load in back-end servers. This policy can 
measure load of static and dynamic requests in 
back-end servers.  
 
3. PROPOSED HYBRID LARD 

POLICY 
 

In this section, we present the design and 
implementation of our proposed HyLARD policy.  
 
3.1. Aiming For Reducing Swapping 
 

We found that the LARD/R policy would not get 
a good performance when the web site contains many 
large-sized and frequently accessed files like 
WorldCup98. This may be caused by the situation 
when many large files are cached in most of back-end 
servers. If more large files are cached in many 
back-end servers, fewer amount of small files can be 
cached in back-end servers. That would increase disk 
swapping in back-end servers because of inefficiently 
using back-end servers’ RAM. Besides, the throughput 
on the whole web cluster will decrease because disk 
I/O time is much longer than memory access time. In 
the other words, if too many back-end servers serve 
large files, the performance of the whole cluster will 
decrease. It means we should take into account the file 
sizes when front-end server choosing back-end servers 
to serve requests. 

Therefore, we present a simple strategy to reduce 
the disk operation times. In HyLARD, front-end 
server distributes large files under LARD policy and 
distributes small files under LARD/R policy. So, a 
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large file will be served by only one back-end server 
no matter whether it is a frequently accessed file. This 
may lead to load unbalancing among back-end servers. 
However, it is a tradeoff between load balancing and 
reducing disk I/O. 
 
3.2. Aiming with reducing multi-handoff 
 

To support persistent connection in HTTP 1.1, a 
front-end server has to support multi-handoff such that 
it can hand off an established connection with client to 
another back-end server from original back-end server. 
LVS-CAD is based on TCP Rebuilding mechanism 
and also supports the multi-handoff mechanism.  

Because content-aware policies need to analyze 
content of requests and route requests to the specific 
back-end server, every incoming request will be 
scheduled and dispatched. Contrarily, content-blind 
policies can get much better performance in persistent 
connection because a back-end server does not have to 
perform three-way handshaking operations in the 
same connection. Therefore, content-aware policies 
may get worse performance than content-blind 
policies in HTTP 1.1 environment. 

With the aim for reducing multi-handoff, we take 
the cost of multi-handoff into account in front-end 
server when it chooses one back-end server for 
dispatching in a persistent connection. As shown in 
Figure 1, when a request has been scheduled and one 
back-end server has been selected under HyLARD 
algorithm, the front-end server needs to check whether 
it is worth to handoff the TCP connection from this 
ongoing connection. 
 

Find a server with 
HyLARD

Current real server is in 
the request’s server set?

Is it worth to handoff
connection? 

Yes

Handoff to  the selected 
real server

No

Yes

No

Fetch a request

Find a server with 
HyLARD

Current real server is in 
the request’s server set?

Is it worth to handoff
connection? 

Yes

Handoff to  the selected 
real server

No

Yes

No

Fetch a request

 
Figure 1 Reducing multiple handoffs in HyLARD 

algorithm 
 
3.3. Implementation 
 

Figure 2 shows the pseudo-code of HyLARD. 
The configurable variables such as Threshold, M, P, 

and Q appear in boldface. The Threshold in pseudo 
code is used to distinguish large files and small files. 
M is used to determine whether the least loaded 
back-end node in this server set is overloaded. 
Front-end server takes the value P of TCP handoff 
cost into account, after getting a back-end node 
through LARD/R policy. This request will be served 
by the original connected back-end server if the 
original back-end server is in the server set of this 
request and it is not worth to handoff request to 
another back-end server. Finally, when there is no 
back-end server to be added or removed from this 
server set for Q second, which means that this request 
is no longer the frequently accessed file. Then, one 
most loaded back-end server will be removed from 
this server set.  
 
 

fetch request r
o � previous back-end node
if target file size >= Threshold Kbytes

// LARD
if server[r.target] = NULL
d, server[r.target] � least load node

else
d � server[r.target]

else
// LARD/R
l � least loaded node
if serverset[r.target] = NULL
d, serverset[r.target] � 1

else
n � least loaded node in serverset[r.target]
if n != 1 && n.activeconns – l.activeconns >= M
//overloaded
d, serverset[r.target] � 1

if o != d && o ∩ serverset[r.target]
//consider the multi-handoff cost
if o.activeconns – d.activeconns <= P

d � o
if serverset[r.target] > 1 &&

time() – serverset[r.target].leastmod > Q
m � most loaded node in server[r.target]
remove m from serverset[r.target]

if serverset[r.target] changed in this repetition
serverset[r.target].lastmod � time()

send r to d
 

 
Figure 2 Pseudo-code of HyLARD 

 
4. PERFORMANCE EVALUATION 
 

This section first presents our experimental 
environment. The experimental results of the 
HyLARD policy using WorldCup98 accessed log are 
presented. We compare the performance of HyLARD 
policy with two commonly used content-blind request 
dispatching policies, i.e. Weighted Round-Robin 
(WRR) [2,6] and Weighted Least-Connection (WLC) 
[2,6], and two content-aware request dispatching 
policies, i.e. Locality-Aware Request Distribution 
(LARD) and LARD with Replication (LARD/R). 
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4.1. Experimental Environment 
 

Eight back-end servers and one front-end server 
are used in our web cluster. Ten clients run httperf [11] 
benchmark to generate requests and send requests to 
the whole web cluster. All computers connected to a 
D-Link DES-3225G switch. The hardware and 
software environment is shown in Table 1. Our 
proposed HyLARD, LARD, and LARD/R run on the 
LVS-CAD platform which supports content-aware 
dispatching and uses modified direct routing 
mechanism to route requests. The WRR and WLC run 
on the original Linux Virtual Server which supports 
only content-blind request dispatching. 
 

TABLE 1 Hardware and software environment 

Item Front-end Back-end Client 
Processor(M

Hz) 
Intel P4 

3.4G 
Intel P4 3.4G Intel P4 2.4G 

Memory 
(MB) 

DDR 512 DDR 256 DDR 256 

NIC (Mbps) Intel Pro 
100/1000 

Intel Pro 
100/1000 

Reltek 
RTL8139 

OS Red Hat 
Linux 8.0 

Red Hat 
Linux 8.0 

Red Hat 
Linux 8.0 

Kernel 2.4.18 2.4.18 2.4.18-14 
IPVS 1.0.4 X X 

Web Server X Apache 
2.0.40 

X 

Benchmark X X httperf 
Number of 

PCs 
1 8 10 

 
4.2. Access Log 
 

We use the publicly obtainable trace log named 
WorldCup98 trace log from the Internet Traffic 
Archive [12]. Because the whole trace log is 
extremely large, we used only six hours of requests on 
the day July 12, 1998 from AM 09:00 to PM 03:00. In 
this span of time, there were 1,974,360 requests 
accessed and totally 10,562 files on clusters. 
 
4.3. Experimental Setting  
 

In our experiments, first we have to determine 
the threshold of file size to get the best performance. 
Figure 3 shows the performance of HyLARD in 
different “threshold” value. If threshold is set to 0, all 
requests are scheduled in pure LARD policy. If the 
threshold is set to high value which is higher than the 
maximal file’s size, HyLARD executes by always 
using LARD/R policy. Therefore, in order to take the 
advantage of LARD and LARD/R, it is necessary to 
set a proper threshold to get the best performance. 

As showed in figure 3, the HyLARD policy gets 
the best performance when the threshold is set to 500. 
Therefore, in the following experiments, threshold is 
set to 500 in HyLARD policy. As threshold is set to 

500, the number of large files occupies 16% of total 
web files. But, the total size of these large files 
occupies 83.02% of total web files size. 
 
 

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

0 32 64 128 256 500 1024 2048 3072
Threshold(Kbytes)

R
eq

u
es

ts
/S

 
Figure 3 Performances of HyLARD 

 
Other configurations are shown as follows. M is 

set to 2, which means the least loaded node of this 
server set is overload if it has two more active 
connections than the least loaded server. P is set to 1, 
which represents the TCP handoff cost. Finally, when 
the server set of a request has not been modified for Q 
(set to 60) seconds, the most loaded back-end server in 
the server set will be removed. 
 
4.4. Performance Impact On Considering 

Multiple Handoffs 
 

At first, we should confirm if the multiple 
handoffs will affect performance of web cluster. In 
this experiment, each connection sends ten requests so 
that front-end server would do multiple handoffs. 
Table 2 compares the performance between HyLARD 
without considering excessive TCP handoff and the 
enhanced HyLARD that considers reducing excessive 
TCP handoffs.  
 
 

Table 2. Evaluate the performance of considering 
excessive multiple handoffs 

 
 

The result shows that the original HyLARD 
without considering reducing excess multi-handoffs 
really gets bad performance compared with the 
enhanced HyLARD. Our proposed algorithm clearly 
reduces some multiple handoff overhands. 

#test Algorithm requests/s 

1 
The original HyLARD without 
considering multi-handoff 

2350.3 

2 The enhanced HyLARD 2439.1 
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4.5. Performance Comparisons 
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Figure 4 Comparison of various policies with no 

persistent connection 
 

Figure 4 shows the first experimental result 
under the situation of only one request at each 
connection. In this setting, HyLARD can get better 
throughput than WRR since HyLARD can reduce the 
disk I/O and achieve high cache hit rates in the 
back-end servers. Besides, HyLARD also gets better 
throughput than LARD and LARD/R. As presented in 
Figure 4, HyLARD can get 153.74% better throughput 
than WRR, and outperform LARD and LARD/R by 
61.47% and 10.11%, respectively. 
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Figure 5 Comparison of various policies with ten 

requests per connection 
 

Figure 5 shows the second experimental result 
under the situation of ten requests per connection. 
Because of the advantage of persistent connection, 
WRR can obtain better throughput than the result 
shown in the first experiment. The content-aware 
policies can not get as much benefit from persistent 
connection as WRR does since front-end server has to 
run dispatching policy at per coming request instead 
of per connection. Besides, excessive multi-handoffs 
would reduce the throughput of content-aware 

dispatching policies. However, HyLARD still 
performs 84.51% better throughput than WRR and 
16.90% better throughput than LARD/R. 
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Figure 6 Comparison of various policies with 

twenty requests per connection 
 

Figure 6 shows the third experimental result of 
comparing four policies under the situation of twenty 
requests per connection. The throughput of 
content-blind WRR policy gets better and is similar to 
LARD policy. Whereas, content-aware policies get 
only slight improvement. Since both HyLARD and 
LARD/R get small amount of improvement, the 
throughput of HyLARD is better than that of LARD/R 
about 16.67% which is similar to the result in the 
second experiment. 
 
4.6. Performance Growth Under HTTP/1.1 
 

In this experiment, we compare the performance 
growth between content-blind WLC algorithm and our 
proposed content-aware HyLARD algorithm. 
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Figure 7 Performance growth in WLC and 

HyLARD 
 

Figure 7 shows the performance growth in WLC 
and HyLARD when the number of requests per 
connection is increased. Although, content-aware 
policies have the multiple handoff overhands, our 
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enhanced HyLARD still can obtain much 
improvement in ten requests per connection compare 
with that in one request per connection. This is 
because we try to reduce the excessive multi-handoffs 
in our policy. Besides, the result shows the 
performance growth rate of WLC is larger than that of 
HyLARD in the first three throughputs because the 
content-blind policies do not have to hand off 
connections among back-end servers. 

We can find the performance of content-aware 
HyLARD algorithm under ten requests per connection 
is almost same as that of twenty or thirty requests per 
connection. That is because the front-end handoffs 
requests under persistent connections and web files 
have the same locality under these environments. 

However, the throughputs of WLC and HyLARD 
certainly decrease when each connection dispatches 
forty requests. The performance degradation may be 
caused by the load unbalancing among back-end 
servers. 

To sum up, our proposed HyLARD 
content-aware dispatching policy can still get better 
performance than the well-known WLC content-blind 
request distribution policy even in the persistent 
connection environment. HyLARD also performs best 
among the content-aware request distribution policies. 
 
5. CONCLUSIONS 
 

In this paper, we have proposed an effective 
content-aware dispatching policy called HyLARD 
which combines the advantages of LARD and 
LARD/R policies. This research focuses on reducing 
disk I/O and balancing the loads among back-end 
servers to get better performance. We have 
implemented this policy on our previous work of 
LVS-CAD platform which is modified from LVS and 
could effectively support content-aware request 
distribution.  

Our experimental results show that 
content-aware policies in the persistent connections 
environment would not increase as much throughput 
as the content-blind policies. This is because front-end 
server has to schedule each incoming requests and 
may need to hand off connections to different 
back-end servers. However, the cost of TCP handoff 
has been considered and reduced in HyLARD policy. 
Besides, the experimental results also show that our 
HyLARD policy can still obtain more throughput than 
WRR and LARD/R policies under HTTP/1.1.  

The best threshold for deciding between LARD 
and LARD/R is found to be 500KB in Section 4. This 
threshold value depends on the amount of memory in 
the system, the number of nodes, the performance of 
each node, the performance of the disks, etc. i.e. it 
depends on the testbed. But, no matter what threshold 
value is set, the performances of HyLARD are better 
than that of LARD or LARD/R.  

In this HyLARD policy, those controlled 
variables used need to be further studied, such as 

determining threshold between large files and small 
files on different workload, the cost of multi-handoff, 
and the span of time to remove one back-end server 
from a server set.  
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