
HyLARD: A Hybrid Locality-Aware Request Distribution Policy
in Cluster-based Web Servers

Shang-Yi Zhuang, Mei-Ling Chiang

Department of Information Management
National Chi-Nan University

Taiwan, R.O.C
s95213532@ncnu.edu.tw

joanna@ncnu.edu.tw

Abstract

The cluster-based web server is cost-effective to
be used in a popular web site. To balance the load of
servers in a cluster and get better performance, many
researches focus on the content-aware request
distribution policies that take into account the content
of requests in distributing requests from clients to
servers.

In this paper, we have proposed a content-aware
request distribution policy called Hybrid
Locality-Aware Request Distribution policy
(HyLARD). This policy mainly combines the
advantages of the well-known locality-aware request
distribution (LARD) policy and LARD with
replication (LARD/R) policy, to improve the cache hit
rates in servers’ RAM while maximizing the
utilization of servers’ RAM. Besides, it also reduces
the excessive multiple handoffs on persistent
connections and improves load balancing on the
server cluster. We have implemented it in the Linux
Virtual Server with content-aware dispatching
(LVS-CAD) Platform.
Keywords: web clusters, cluster-based systems,
content-aware request distribution.

1. INTRODUCTION

Popular web sites often face the challenge to deal
with huge amount of http requests at short time. A
single server usually can’t deal with such huge
requests. Therefore, a cluster-based web server that
can provide high scalability and high availability is
often been used. Among the cluster-based servers,
Linux Virtual Server (LVS) [6] which consists of
several request-handling back-end servers and one
request-dispatching front-end server is popularly used.

To get better performance, many content-aware
platforms [2, 7, 10] have been developed to enable
front-end server to apply sophisticated dispatching
policies. The front-end server of a content-aware web
cluster is also known as the layer-7 web switch in the
OSI architecture. Many content-aware request
distribution policies [3, 4, 5, 8] have been proposed to
increase the throughput of the whole server cluster and
balance the loads among the back-end servers, such as
LARD [9], WARD [4], CWARD [5] and CAP [3]

policies.
Locality-aware request distribution (LARD)

policy is one of well-known content-aware request
distribution policies. In LARD policy, front-end server
dispatches the request of the same web object to the
same back-end server. However, LARD may lead to
load unbalancing due to the different popularity of
web pages. Therefore, LARD/R policy was proposed
to solve this problem by using server sets consisting of
several back-end servers that may be selected to serve
one specific request to prevent load unbalancing.

In this research, we propose the hybrid
locality-aware request distribution policy (HyLARD)
to enhance the LARD/R policy and implement it in
the Linux Virtual Server with content-aware
dispatching (LVS-CAD) Platform [7] which is based
on TCP Rebuilding mechanism [7]. The LVS-CAD
also supports multiple TCP Rebuilding like multiple
handoff [7] which enables content-aware request
distribution under persistent connections.

The rest of this paper is organized as follows.
Section 2 introduces the background and related
works. The design and implementation of our
proposed Hybrid LARD (HyLARD) is presented in
Section 3. Section 4 presents the experimental results.
Finally, we conclude in Section 5.

2. BACKGROUND and RELATED

WORKS

This section describes related content-aware
request distribution policies. Section 2.1 briefly
describes Linux Virtual Server. TCP rebuilding
mechanism is introduced in Section 2.2. Section 2.3
presents the locality-aware requests distribution
(LARD) policy and LARD/R policy. Workload-aware
request distribution (WARD) is described in Section
2.4. Then, content-based workload-aware request
distribution (CWARD) and content-aware dispatching
policy (CAP) are described in Section 2.5 and Section
2.6 respectively.

2.1. Linux Virtual Server

Linux virtual server (LVS) developed by
Wensong Zhang is a highly scalable and highly

TANET2007臺灣網際網路研討會論文集〔二〕

available cluster-based server based on Linux. LVS
consists of one front-end server and several back-end
servers. There are three kinds of routing mechanisms
on LVS: NAT (network address translation), IP
tunneling and direct routing. Direct routing is the most
efficient mechanism. The front-end server in LVS is
also called layer-4 web switch according to the OSI
layer. The layer-4 web switch dispatches requests
according to the IP address and TCP port number in a
packet.

2.2. TCP Rebuilding Mechanism

TCP rebuilding mechanism is used to enable the
content-aware request distribution on LVS-CAD
platform. In this platform, front-end server must
perform three-way handshaking with clients to get the
following requests containing HTTP content. Then,
the front-end server can schedule the request to one of
back-end servers according to the content of request.
Therefore, TCP state must be migrated to the selected
back-end server so that the selected back-end server
can respond directly to the client.

TCP rebuilding is a light-weight TCP connection
transfer mechanism which makes front-end server to
transfer the established connection with client to a
back-end server by using only the request packet.

2.3. Locality-Aware Request Distribution

The locality-aware request distribution (LARD)
policy is a content-based request distribution policy
which aims at achieving load balancing and high
cache hit rates.

In LARD, when a request arrives, front-end
server will choose the least loaded back-end server to
serve the request and keep the mapping information of
this request to the chosen back-end server. Then, the
subsequently identical request will be served by the
same back-end server to achieve high cache hit rates
for reducing the disk I/O operations.

In LARD/R, when a request arrives, front-end
will select one back-end server in the same manner as
LARD does. Once the selected back-end server is
overload, front-end will select another least loaded
back-end server to serve this request. Thus, there are
two or more back-end servers to serve this request and
cache the document in RAM. These back-end servers
form a server set of this request.

2.4. Workload-Aware Request Distribution

Workload-aware request distribution (WARD) is
also a content-based request distribution policy which
identifies a small set of most frequently accessed files
called core to be served by all servers in the cluster.
The rest of files called part are partitioned to be served
by different back-end servers. WARD uses the
ward-analysis algorithm to determine the file size of

core files. Another idea in this policy is to make each
back-end server could forward requests to other
servers.

2.5. Content-Based Workload-Aware Request

Distribution

Content-based workload-aware request
distribution with core replication (CWARD/CR) aims
to achieve high cache hit rates and reduce the data
transferring between RAM and disks. It’s similar to
WARD policy which partitions web files into core and
part. However, CWARD/CR allocates a small
amount of RAM to pre-fetch core files into server
RAMs that could effectively avoid core files to be
replaced into disks due to cache replacement.

2.6. Content-Aware Dispatching Policy

The main goal of content-aware dispatching
policy (CAP) is to improve load sharing in web cluster
by classifying services. CAP classifies requests into
four classes, namely normal (N), CPU bound (CB),
disk bound (DB), and disk and CPU bound (DCB)
services. Then, round-robin is used in each class to
balance the load in back-end servers. This policy can
measure load of static and dynamic requests in
back-end servers.

3. PROPOSED HYBRID LARD

POLICY

In this section, we present the design and
implementation of our proposed HyLARD policy.

3.1. Aiming For Reducing Swapping

We found that the LARD/R policy would not get
a good performance when the web site contains many
large-sized and frequently accessed files like
WorldCup98. This may be caused by the situation
when many large files are cached in most of back-end
servers. If more large files are cached in many
back-end servers, fewer amount of small files can be
cached in back-end servers. That would increase disk
swapping in back-end servers because of inefficiently
using back-end servers’ RAM. Besides, the throughput
on the whole web cluster will decrease because disk
I/O time is much longer than memory access time. In
the other words, if too many back-end servers serve
large files, the performance of the whole cluster will
decrease. It means we should take into account the file
sizes when front-end server choosing back-end servers
to serve requests.

Therefore, we present a simple strategy to reduce
the disk operation times. In HyLARD, front-end
server distributes large files under LARD policy and
distributes small files under LARD/R policy. So, a

TrackF-網際網路技術

large file will be served by only one back-end server
no matter whether it is a frequently accessed file. This
may lead to load unbalancing among back-end servers.
However, it is a tradeoff between load balancing and
reducing disk I/O.

3.2. Aiming with reducing multi-handoff

To support persistent connection in HTTP 1.1, a
front-end server has to support multi-handoff such that
it can hand off an established connection with client to
another back-end server from original back-end server.
LVS-CAD is based on TCP Rebuilding mechanism
and also supports the multi-handoff mechanism.

Because content-aware policies need to analyze
content of requests and route requests to the specific
back-end server, every incoming request will be
scheduled and dispatched. Contrarily, content-blind
policies can get much better performance in persistent
connection because a back-end server does not have to
perform three-way handshaking operations in the
same connection. Therefore, content-aware policies
may get worse performance than content-blind
policies in HTTP 1.1 environment.

With the aim for reducing multi-handoff, we take
the cost of multi-handoff into account in front-end
server when it chooses one back-end server for
dispatching in a persistent connection. As shown in
Figure 1, when a request has been scheduled and one
back-end server has been selected under HyLARD
algorithm, the front-end server needs to check whether
it is worth to handoff the TCP connection from this
ongoing connection.

Find a server with
HyLARD

Current real server is in
the request’s server set?

Is it worth to handoff
connection?

Yes

Handoff to the selected
real server

No

Yes

No

Fetch a request

Find a server with
HyLARD

Current real server is in
the request’s server set?

Is it worth to handoff
connection?

Yes

Handoff to the selected
real server

No

Yes

No

Fetch a request

Figure 1 Reducing multiple handoffs in HyLARD

algorithm

3.3. Implementation

Figure 2 shows the pseudo-code of HyLARD.
The configurable variables such as Threshold, M, P,

and Q appear in boldface. The Threshold in pseudo
code is used to distinguish large files and small files.
M is used to determine whether the least loaded
back-end node in this server set is overloaded.
Front-end server takes the value P of TCP handoff
cost into account, after getting a back-end node
through LARD/R policy. This request will be served
by the original connected back-end server if the
original back-end server is in the server set of this
request and it is not worth to handoff request to
another back-end server. Finally, when there is no
back-end server to be added or removed from this
server set for Q second, which means that this request
is no longer the frequently accessed file. Then, one
most loaded back-end server will be removed from
this server set.

fetch request r
o � previous back-end node
if target file size >= Threshold Kbytes

// LARD
if server[r.target] = NULL
d, server[r.target] � least load node

else
d � server[r.target]

else
// LARD/R
l � least loaded node
if serverset[r.target] = NULL
d, serverset[r.target] � 1

else
n � least loaded node in serverset[r.target]
if n != 1 && n.activeconns – l.activeconns >= M
//overloaded
d, serverset[r.target] � 1

if o != d && o ∩ serverset[r.target]
//consider the multi-handoff cost
if o.activeconns – d.activeconns <= P

d � o
if serverset[r.target] > 1 &&

time() – serverset[r.target].leastmod > Q
m � most loaded node in server[r.target]
remove m from serverset[r.target]

if serverset[r.target] changed in this repetition
serverset[r.target].lastmod � time()

send r to d

Figure 2 Pseudo-code of HyLARD

4. PERFORMANCE EVALUATION

This section first presents our experimental
environment. The experimental results of the
HyLARD policy using WorldCup98 accessed log are
presented. We compare the performance of HyLARD
policy with two commonly used content-blind request
dispatching policies, i.e. Weighted Round-Robin
(WRR) [2,6] and Weighted Least-Connection (WLC)
[2,6], and two content-aware request dispatching
policies, i.e. Locality-Aware Request Distribution
(LARD) and LARD with Replication (LARD/R).

TANET2007臺灣網際網路研討會論文集〔二〕

4.1. Experimental Environment

Eight back-end servers and one front-end server
are used in our web cluster. Ten clients run httperf [11]
benchmark to generate requests and send requests to
the whole web cluster. All computers connected to a
D-Link DES-3225G switch. The hardware and
software environment is shown in Table 1. Our
proposed HyLARD, LARD, and LARD/R run on the
LVS-CAD platform which supports content-aware
dispatching and uses modified direct routing
mechanism to route requests. The WRR and WLC run
on the original Linux Virtual Server which supports
only content-blind request dispatching.

TABLE 1 Hardware and software environment

Item Front-end Back-end Client
Processor(M

Hz)
Intel P4

3.4G
Intel P4 3.4G Intel P4 2.4G

Memory
(MB)

DDR 512 DDR 256 DDR 256

NIC (Mbps) Intel Pro
100/1000

Intel Pro
100/1000

Reltek
RTL8139

OS Red Hat
Linux 8.0

Red Hat
Linux 8.0

Red Hat
Linux 8.0

Kernel 2.4.18 2.4.18 2.4.18-14
IPVS 1.0.4 X X

Web Server X Apache
2.0.40

X

Benchmark X X httperf
Number of

PCs
1 8 10

4.2. Access Log

We use the publicly obtainable trace log named
WorldCup98 trace log from the Internet Traffic
Archive [12]. Because the whole trace log is
extremely large, we used only six hours of requests on
the day July 12, 1998 from AM 09:00 to PM 03:00. In
this span of time, there were 1,974,360 requests
accessed and totally 10,562 files on clusters.

4.3. Experimental Setting

In our experiments, first we have to determine
the threshold of file size to get the best performance.
Figure 3 shows the performance of HyLARD in
different “threshold” value. If threshold is set to 0, all
requests are scheduled in pure LARD policy. If the
threshold is set to high value which is higher than the
maximal file’s size, HyLARD executes by always
using LARD/R policy. Therefore, in order to take the
advantage of LARD and LARD/R, it is necessary to
set a proper threshold to get the best performance.

As showed in figure 3, the HyLARD policy gets
the best performance when the threshold is set to 500.
Therefore, in the following experiments, threshold is
set to 500 in HyLARD policy. As threshold is set to

500, the number of large files occupies 16% of total
web files. But, the total size of these large files
occupies 83.02% of total web files size.

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

0 32 64 128 256 500 1024 2048 3072
Threshold(Kbytes)

R
eq

u
es

ts
/S

Figure 3 Performances of HyLARD

Other configurations are shown as follows. M is

set to 2, which means the least loaded node of this
server set is overload if it has two more active
connections than the least loaded server. P is set to 1,
which represents the TCP handoff cost. Finally, when
the server set of a request has not been modified for Q
(set to 60) seconds, the most loaded back-end server in
the server set will be removed.

4.4. Performance Impact On Considering

Multiple Handoffs

At first, we should confirm if the multiple
handoffs will affect performance of web cluster. In
this experiment, each connection sends ten requests so
that front-end server would do multiple handoffs.
Table 2 compares the performance between HyLARD
without considering excessive TCP handoff and the
enhanced HyLARD that considers reducing excessive
TCP handoffs.

Table 2. Evaluate the performance of considering
excessive multiple handoffs

The result shows that the original HyLARD
without considering reducing excess multi-handoffs
really gets bad performance compared with the
enhanced HyLARD. Our proposed algorithm clearly
reduces some multiple handoff overhands.

#test Algorithm requests/s

1
The original HyLARD without
considering multi-handoff

2350.3

2 The enhanced HyLARD 2439.1

TrackF-網際網路技術

4.5. Performance Comparisons

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600

WRR LARD LARD/R HyLARD

T
hr

ou
gh

(r
eq

ue
st

/s
ec

on
d)

Figure 4 Comparison of various policies with no

persistent connection

Figure 4 shows the first experimental result
under the situation of only one request at each
connection. In this setting, HyLARD can get better
throughput than WRR since HyLARD can reduce the
disk I/O and achieve high cache hit rates in the
back-end servers. Besides, HyLARD also gets better
throughput than LARD and LARD/R. As presented in
Figure 4, HyLARD can get 153.74% better throughput
than WRR, and outperform LARD and LARD/R by
61.47% and 10.11%, respectively.

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600

WRR LARD LARD/R HyLARD

T
hr

o
u
gh

p
ut

 (
re

q
ue

st
/s

ec
o
nd

)

Figure 5 Comparison of various policies with ten

requests per connection

Figure 5 shows the second experimental result
under the situation of ten requests per connection.
Because of the advantage of persistent connection,
WRR can obtain better throughput than the result
shown in the first experiment. The content-aware
policies can not get as much benefit from persistent
connection as WRR does since front-end server has to
run dispatching policy at per coming request instead
of per connection. Besides, excessive multi-handoffs
would reduce the throughput of content-aware

dispatching policies. However, HyLARD still
performs 84.51% better throughput than WRR and
16.90% better throughput than LARD/R.

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600

WRR LARD LARD/R HyLARD

T
hr

o
ug

hp
u
t (

re
qu

es
t/
se

co
nd

)

Figure 6 Comparison of various policies with

twenty requests per connection

Figure 6 shows the third experimental result of
comparing four policies under the situation of twenty
requests per connection. The throughput of
content-blind WRR policy gets better and is similar to
LARD policy. Whereas, content-aware policies get
only slight improvement. Since both HyLARD and
LARD/R get small amount of improvement, the
throughput of HyLARD is better than that of LARD/R
about 16.67% which is similar to the result in the
second experiment.

4.6. Performance Growth Under HTTP/1.1

In this experiment, we compare the performance
growth between content-blind WLC algorithm and our
proposed content-aware HyLARD algorithm.

500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

1 10 20 30 40
request/connection

T
hr

ou
gh

pu
t (

re
q/

se
c)

WLC

HyLARD

Figure 7 Performance growth in WLC and

HyLARD

Figure 7 shows the performance growth in WLC
and HyLARD when the number of requests per
connection is increased. Although, content-aware
policies have the multiple handoff overhands, our

TANET2007臺灣網際網路研討會論文集〔二〕

enhanced HyLARD still can obtain much
improvement in ten requests per connection compare
with that in one request per connection. This is
because we try to reduce the excessive multi-handoffs
in our policy. Besides, the result shows the
performance growth rate of WLC is larger than that of
HyLARD in the first three throughputs because the
content-blind policies do not have to hand off
connections among back-end servers.

We can find the performance of content-aware
HyLARD algorithm under ten requests per connection
is almost same as that of twenty or thirty requests per
connection. That is because the front-end handoffs
requests under persistent connections and web files
have the same locality under these environments.

However, the throughputs of WLC and HyLARD
certainly decrease when each connection dispatches
forty requests. The performance degradation may be
caused by the load unbalancing among back-end
servers.

To sum up, our proposed HyLARD
content-aware dispatching policy can still get better
performance than the well-known WLC content-blind
request distribution policy even in the persistent
connection environment. HyLARD also performs best
among the content-aware request distribution policies.

5. CONCLUSIONS

In this paper, we have proposed an effective
content-aware dispatching policy called HyLARD
which combines the advantages of LARD and
LARD/R policies. This research focuses on reducing
disk I/O and balancing the loads among back-end
servers to get better performance. We have
implemented this policy on our previous work of
LVS-CAD platform which is modified from LVS and
could effectively support content-aware request
distribution.

Our experimental results show that
content-aware policies in the persistent connections
environment would not increase as much throughput
as the content-blind policies. This is because front-end
server has to schedule each incoming requests and
may need to hand off connections to different
back-end servers. However, the cost of TCP handoff
has been considered and reduced in HyLARD policy.
Besides, the experimental results also show that our
HyLARD policy can still obtain more throughput than
WRR and LARD/R policies under HTTP/1.1.

The best threshold for deciding between LARD
and LARD/R is found to be 500KB in Section 4. This
threshold value depends on the amount of memory in
the system, the number of nodes, the performance of
each node, the performance of the disks, etc. i.e. it
depends on the testbed. But, no matter what threshold
value is set, the performances of HyLARD are better
than that of LARD or LARD/R.

In this HyLARD policy, those controlled
variables used need to be further studied, such as

determining threshold between large files and small
files on different workload, the cost of multi-handoff,
and the span of time to remove one back-end server
from a server set.

6. References

[1] M. Arlitt and T. Jin, “Workload Characterization of

the 1998 World Cup Web site,” Hewlett-Packard
Technical Report HPL-1999-35R1, February 1999.

[2] V. Cardellini, E. Casalicchio, M. Colajanni, and P.
S. Yu, “The State of the Art in Locally Distributed
Web-Server Systems,” ACM Computing Surveys,
Vol. 34, No. 2, pp. 263-311, June 2002.

[3] E. Casalicchio and M. Colajanni, “A Client-Aware
Dispatching Algorithm for Web Clusters Providing
Multiple Services,” Proc. of 10th Int'l World Wide
Web Conference, Hong Kong, pp. 535-544, May
1-5, 2001.

[4] L. Cherkasova and M. Karlsson, “Scalable Web
Server Cluster Design with Workload-Aware
Request Distribution Strategy WARD,” 3rd
International Workshop on Advanced Issues of
E-Commerce and Web-Based Information Systems,
San Jose, CA, pp. 212-221, June 2001.

[5] Y. C. Lin, M. L. Chiang, and L. F. Gu, “System
Support for Workload-aware Content-based
Request Distribution in Web Clusters,” Journal of
Internet Technology, Vol. 7, No. 3, 2006.

[6] Linux Virtual Server Website,
http://www.linuxvirtualserver.org/, May 2007.

[7] H. H. Liu, M. L. Chiang, and M.C. Wu, "Efficient
Support for Content-Aware Request Distribution
and Persistent Connection in Web Clusters," to
appear in Software Practice & Experience, 2006.

[8] M. Y. Lou, C. S. Yang, and C. W. Tseng, “Analysis
and Improvement of Content-Aware Routing
Mechanisms,” IEICE Transactions on
Communications, Vol.E88-B No.1 p.227-238,
January 2005.

[9] V. S. Pai, et al, “Locality-Aware Request
Distribution in Cluster-based Network Servers,”
Eighth International Conference on Architectural
Support for Programming Languages and
Operating Systems, San Jose, CA, Oct. 1998.

[10] M. D. Santo, N. Ranaldo, E. Zimeo, “Kernel
implementations of Locality-Aware Dispatching
Techniques for Web Server Clusters,” Proceedings
of the IEEE International Conference on Cluster
Computing, Dec. 2003.

[11] The httperf,
http://www.hpl.hp.com/research/linux/httperf/,
May 2007.

[12] The Internet Traffic Archive Website,
http://ita.ee.lbl.gov/, May 2007.

TrackF-網際網路技術

